Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 9900-9907, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38344949

RESUMO

Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.


Assuntos
Acetilcolinesterase , Zeolitas , Acetilcolinesterase/química , Organofosfatos/toxicidade , Zeolitas/química , Antídotos/química , Compostos Orgânicos , Zinco/química
2.
ACS Appl Mater Interfaces ; 15(27): 32597-32609, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390355

RESUMO

The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Hidrogéis/química , Sais , Peptídeos , Sistemas de Liberação de Medicamentos
3.
Inorg Chem ; 62(13): 5049-5053, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939843

RESUMO

A novel material with dual activity toward organophosphate (OP) poisoning, based on Zr-MOF-808 and neutral oxime RS69N, has been prepared. The hybrid material has a significant drug payload (5.2 ± 0.9 oxime to MOF-808 molar ratio) and shows a sustained oxime release in simulated physiological media, leading to the successful reactivation of OP-inhibited acetylcholinesterase. At the same time, the hybrid system presents an efficient and moderately fast removal rate of a toxic organophosphorus model compound (diisopropylfluorophosphate) from simulated physiological media (t1/2 = 183 min; 95% removal rate after 24 h).


Assuntos
Reativadores da Colinesterase , Estruturas Metalorgânicas , Intoxicação por Organofosfatos , Humanos , Oximas/farmacologia , Antídotos , Reativadores da Colinesterase/farmacologia , Zircônio , Acetilcolinesterase , Inibidores da Colinesterase/farmacologia , Compostos Organofosforados/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-35653699

RESUMO

Organophosphate nerve agents and pesticides are extremely toxic compounds because they result in acetylcholinesterase (AChE) inhibition and concomitant nerve system damage. Herein, we report the synthesis, structural characterization, and proof-of-concept utility of zirconium metal-organic polyhedra (Zr-MOPs) for organophosphate poisoning treatment. The results show the formation of robust tetrahedral cages [((n-butylCpZr)3(OH)3O)4L6]Cl6 (Zr-MOP-1; L = benzene-1,4-dicarboxylate, n-butylCp = n-butylcyclopentadienyl, Zr-MOP-10, and L = 4,4'-biphenyldicarboxylate) decorated with lipophilic alkyl residues and possessing accessible cavities of ∼9.8 and ∼10.7 Šinner diameters, respectively. These systems are able to both capture the organophosphate model compound diisopropylfluorophosphate (DIFP) and host and release the AChE reactivator drug pralidoxime (2-PAM). The resulting 2-PAM@Zr-MOP-1(0) host-guest assemblies feature a sustained delivery of 2-PAM under simulated biological conditions, with a concomitant reactivation of DIFP-inhibited AChE. Finally, 2-PAM@Zr-MOP systems have been incorporated into biocompatible phosphatidylcholine liposomes with the resulting assemblies being non-neurotoxic, as proven using neuroblastoma cell viability assays.

5.
ACS Appl Mater Interfaces ; 13(42): 50491-50496, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644067

RESUMO

We report the controlled synthesis of thin films of prototypical zirconium metal-organic frameworks [Zr6O4(OH)4(benzene-1,4-dicarboxylate-2-X)6] (X = H, UiO-66 and X = NH2, UiO-66-NH2) over the external surface of shaped carbonized substrates (spheres and textile fabrics) using a layer-by-layer method. The resulting composite materials contain metal-organic framework (MOF) crystals homogeneously distributed over the external surface of the porous shaped bodies, which are able to capture an organophosphate nerve agent simulant (diisopropylfluorophosphate, DIFP) in competition with moisture (very fast) and hydrolyze the P-F bond (slow). This behavior confers the composite material self-cleaning properties, which are useful for blocking secondary emission problems of classical protective equipment based on activated carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA